STM32中使用看门狗实现系统自动复位

STM32中的看门狗(Watchdog)是一种用于监控系统运行状态并在系统故障或死锁时执行自动复位的硬件功能。在本文中,我将介绍如何在STM32微控制器中使用看门狗来实现系统的自动复位。下面是详细的解释:

一、看门狗原理简介
看门狗是一种独立的硬件计时器,在启动看门狗计时器之后,系统需要在一定的时间内喂狗(即清除计时器计数值),否则看门狗将会超时,触发系统自动复位。这是一种预防系统死锁或异常情况的安全机制。

二、看门狗的配置
在STM32中,看门狗的配置主要涉及以下几个方面:时钟源、预分频系数、重载值和使能位。

1. 时钟源:通常可以选择LSI(低速内部时钟)或LSI的2倍作为看门狗的时钟源。

2. 预分频系数:预分频系数用于控制看门狗计时器的时钟频率,根据系统需求选择合适的预分频系数。

3. 重载值:重载值决定了看门狗计时器的定时时长,当看门狗计时器达到重载值时,将会触发系统复位。

4. 使能位:使能位用于启用或禁用看门狗功能。

下面是一个使用STM32Cube HAL库配置看门狗的示例代码:

```c
#include "main.h"
#include "stm32f4xx_hal.h"
 
WWDG_HandleTypeDef hwwdg;
 
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_WWDG_Init(void);
 
int main(void)
{
  HAL_Init();
  SystemClock_Config();
  MX_GPIO_Init();
  MX_WWDG_Init();
 
  while (1)
  {
    // 喂狗
    HAL_WWDG_Refresh(&hwwdg);
  }
}
 
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
 
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 25;
  RCC_OscInitStruct.PLL.PLLN = 336;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 7;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
  {
    Error_Handler();
  }
  HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq() / 1000);
  HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
  HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
}
 
static void MX_WWDG_Init(void)
{
  hwwdg.Instance = WWDG;
  hwwdg.Init.Prescaler = WWDG_PRESCALER_8;
  hwwdg.Init.Window = 127;
  hwwdg.Init.Counter = 127;
 
  if (HAL_WWDG_Init(&hwwdg) != HAL_OK)
  {
    Error_Handl‌er();
  }
}
```
以上代码中,我们首先初始化系统时钟(System Clock),然后初始化GPIO和看门狗计时器。在main函数中,在一个无限循环中,我们通过调

用HAL_WWDG_Refresh函数来喂狗,确保看门狗计时器的计数值不会超时,从而防止系统自动复位。

在以上代码中,我们配置了一个预分频系数为8,重载值为127的看门狗计时器,并在无限循环中调用HAL_WWDG_Refresh函数来喂狗,以保证系统的正常运行。如果系统中出现了死锁或其他异常情况导致程序未能及时喂狗,导致计数器超时,看门狗将会触发系统复位,从而实现系统自动复位的功能。

三、注意事项
在使用STM32中的看门狗功能时,需要注意以下几点:

1. 重载值的选择:重载值的选择需要根据系统运行时间和所需的复位间隔来确定。如果重载值太小,可能会导致看门狗频繁触发复位,影响系统的稳定性;如果重载值太大,可能会导致看门狗计数器无法及时超时,从而无法实现自动复位的功能。

2. 喂狗的频率:在使用看门狗功能时,需要定时喂狗,否则看门狗会在计时器超时时触发系统复位。喂狗的频率应该在重载值的一半以上,以保证系统能够正常运行。

3. 系统的初始化时间:看门狗计数器的启动时间需要一定的时间,因此在初始化系统时,需要保证计时器已经启动并工作正常。

4. 发生异常时的处理:如果程序发生异常,例如死锁或死循环等情况,可能会导致看门狗计时器无法及时喂狗,从而触发系统复位。因此需要注意程序的稳定性和安全性,尽可能避免出现异常情况并进行针对性的处理。

总结:
在STM32中使用看门狗实现系统自动复位,需要进行时钟源、预分频系数、重载值和使能位的配置。通过定时喂狗,可以保证看门狗计时器的正常工作,防止系统出现异常情况,实现系统的自动复位功能。

嵌入式物联网的学习之路非常漫长,不少人因为学习路线不对或者学习内容不够专业而错失高薪offer。不过别担心,我为大家整理了一份150多G的学习资源,基本上涵盖了嵌入式物联网学习的所有内容。点击这里,0元领取学习资源,让你的学习之路更加顺畅!记得点赞、关注、收藏、转发哦。 


the end

评论(0)