数据结构中的7种排序算法

排序是将一个记录的任意序列重新排列成一个按键值有序的序列。时间复杂度主要考虑元素的移动次数。

结构如下:

1.直接插入排序

l 定义:依次将待排序序列中的每一个记录插入到一个已经排好序的序列中,直到全部记录都排好序。

l 时间复杂度:在最好情况下,待排序序列为正序,时间复杂度为O(n);最坏情况下,待排序序列为逆序,时间复杂度为O(n^2);平均情况下,时间复杂度为O(n^2)。

l 空间复杂度:O(1)。

public static void insertSort(int[] nums){//直接插入排序

        for(int i=1;i<nums.length;i++){

            for(int j=i;j>0;j--){

                if(nums[j]<nums[j-1]){                  

                    int temp=nums[j];

                    nums[j]=nums[j-1];

                    nums[j-1]=temp;

                }   

            }

            System.out.print(i+":");

            for(int a:nums)

                System.out.print(a+" ");

            System.out.println();

        }

    }

示例数组:{12,5,9,20,6,31,24} 结果:

2.希尔排序

l 希尔排序是对直接插入排序的改进。

l 定义:先将整个待排序序列记录序列分割为若干个子序列,在子序列内分别进行直接插入排序,待整个序列中的记录基本有序时,再对全体记录进行一次直接插入排序。

l 时间复杂度:O(nlogn)~O(n^2)。

l 空间复杂度:O(1).

public static void shellSort(int[] nums){//希尔排序

        int d=nums.length/2;//增量大小

        while(d>0){

            int k=0;//控制量

            while(k<d){

                //进行直接插入排序

                for(int i=k;i<nums.length;i=i+d){

                    for(int j=i;j>0&&j-d>=0;j=j-d){

                        if(nums[j]<nums[j-d]){                  

                            int temp=nums[j];

                            nums[j]=nums[j-d];

                            nums[j-d]=temp;

                        }                       

                    }                   

                }   

             k++;//控制量增加

            }//while

            System.out.print(d+":");

            for(int a:nums)

                System.out.print(a+" ");

            System.out.println();

            d=d/2;

         }//while

    }

示例数组:{12,5,9,20,6,31,24} 结果:

3.冒泡排序

l 定义:两两比较相邻记录的关键码,如果是反序则交换,直到没有反序的记录为止。

l 时间复杂度:在最好情况下,待排序序列为正序。其时间复杂度为O(n);在最坏情况下,待排序序列为逆序,时间复杂度为O(n^2),平均时间复杂度为O(n^2).

l 空间复杂度:O(1)。

public static void bubbleSort(int[] nums){//冒泡排序

        for(int i=nums.length-1;i>0;i--){

            for(int j=0;j<i;j++){

                if(nums[j]>nums[j+1]){

                    int temp=nums[j];

                    nums[j]=nums[j+1];

                    nums[j+1]=temp;

                }

            }

            System.out.print(nums.length-i+":");

            for(int a:nums)

                System.out.print(a+" ");

            System.out.println();

        }

    }

示例数组:{12,5,9,20,6,31,24} 结果:

4.快速排序

l 快速排序是对冒泡排序的改进。

l 定义:首先选一个轴值,将待排序记录分割成独立的两部分,左侧记录的关键字均小于或者等于轴值,右边记录的关键字均大于或者等于轴值,然后分别对这两部分重复上述过程,直到整个序列有序。

l 在最好情况下,每次划分轴值的左侧子序列与右侧子序列的长度相同,时间复杂度为O(nlogn),在最坏情况下,待排序序列为正序或逆序,时间复杂度为O(n^2);平均情况下,时间复杂度为O(nlogn)。

l 空间复杂度:O(logn)。

public static void quickSort(int[] nums,int low ,int high){//快速排序

        if(low<high) {          

                int dp=partition(nums,low,high);

                quickSort(nums,low,dp-1);

                quickSort(nums,dp+1,high);                          

        }else{

            return;

        }       

    }

    public static int partition(int[] nums,int low ,int high){

        int pivot=nums[low];

        while(low<high){

            while(low < high && nums[high]>=pivot)

                high--;         

            nums[low]=nums[high];

            while(low < high && nums[low]<=pivot)

                low++;

            nums[high]=nums[low];

        }

        nums[low]=pivot;//此时low等于high,所以,也可以写成nums[high]=pivot;

        return low; //此时low等于high,所以返回任意一个都是正确的

    }

示例数组:{12,5,9,20,6,31,24} 结果:

5.简单选择排序

l 定义:第i趟通过n-i次关键码的比较,在n-i-1(1<=i<=n-1)个记录中选取关键码最小的记录,并和第i个记录交换作为有序序列的第i个记录。

l 时间复杂度:最好,最坏,平均的时间复杂度都是O(n^2)。

l 空间复杂度:O(1)。

        public static void selectSort(int[] nums){//简单选择排序

        for(int i=0;i<nums.length-1;i++){

            int sIndex=i;//最小数下标

            int sNum=nums[i];//最小数大小        

            for(int j=i+1;j<nums.length;j++){

                if(nums[j]<sNum){

                    sIndex=j;

                    sNum=nums[j];

                }

            }

            //交换

            int temp=nums[i];

            nums[i]=nums[sIndex];

            nums[sIndex]=temp;

 

            System.out.print(i+1+":");

            for(int a:nums)

                System.out.print(a+" ");

            System.out.println();

 

        }

    }

示例数组:{12,5,9,20,6,31,24} 结果:

6.堆排序

l 堆排序是对简单选择排序的改进。

l 首先将待排序的记录序列构造成一个堆,此时,选出了堆中所有记录的最大者即堆顶记录,然后将他从堆中移走,并将剩下的记录再调整成堆,这样又找出了次大的记录,以此类推,直到堆中只有一个记录为止。

l 时间复杂度:最好,最坏,平均的时间复杂度都是O(nlogn)。

l 空间复杂度:O(nlogn)。

public static void heapSort(int[] nums) {//堆排序

    if (nums == null || nums.length <= 1) {

         return;

    }

    buildMaxHeap(nums);//调用建立堆的函数

    //将堆顶元素调整至数组最后,然后,将当前堆继续调整为大顶堆

    for (int i = nums.length - 1; i >= 1; i--) {

        int temp=nums[0];

        nums[0]=nums[i];

        nums[i]=temp;

        maxHeap(nums, i, 0);

        System.out.print(nums.length-i+":");

        for(int a:nums)

        System.out.print(a+" ");

        System.out.println();

    }

}

private static void buildMaxHeap(int[] nums) {//建立堆

    if (nums == null || nums.length <= 1) {

        return;

    }

    int half = nums.length / 2;

    for (int i = half; i >= 0; i--) {

        maxHeap(nums, nums.length, i);

    }

}

private static void maxHeap(int[] nums, int heapSize, int index) {//递归调整为大顶堆

    int left = index * 2 + 1;

    int right = index * 2 + 2;

    if( left > heapSize && right > heapSize ){

           //没有这个return,也是正确的,好吧!我没有看懂~

           return;

    }

    int largest = index;

    if (left < heapSize && nums[left] > nums[index]) {

        largest = left;

    }

    if (right < heapSize && nums[right] >nums[largest]) {

        largest = right;

    }

    if (index != largest) {         

        int temp=nums[index];

        nums[index]=nums[largest];

        nums[largest]=temp;

        maxHeap(nums, heapSize, largest);

    }

}

示例数组:{12,5,9,20,6,31,24} 结果:

7.二路归并排序

l 定义:将若干个有序序列进行两两归并,直至所有待排记录都在一个有序序列为止。

l 时间复杂度:最好,最坏,平均都是O(nlogn)。

l 空间复杂度:O(n)。

 public static void mergeSort(int[] a, int left, int right) {

       if(left<right){

           //int center = (left + right) >> 1;

           int center=(left+right)/2;

           mergeSort(a, left, center);

           mergeSort(a, center + 1, right);

           merge(a, left, center, right);

        }else{

            return;

        }

}

    public static void merge(int[] data, int left, int center, int right) {

        int[] tmpArr = new int[right+1];

        int mid = center + 1;

        int index = left; // index记录临时数组的索引

        int tmp = left;

        // 从两个数组中取出最小的放入中临时数组

        while (left <= center && mid <= right) {

            tmpArr[index++] = (data[left] <= data[mid]) ? data[left++]: data[mid++];

        }

        // 剩余部分依次放入临时数组

        while (mid <= right) {

            tmpArr[index++] = data[mid++];

        }

        while (left <= center) {

            tmpArr[index++] = data[left++];

        }

        // 将临时数组中的内容复制回原数组

        for (int i = tmp; i <= right; i++) {

            data[i] = tmpArr[i];

        }

        System.out.println(Arrays.toString(data));

 }

    public static void main(String[] args) {

        int[] arr={12,5,9,20,6,31,24};

        mergeSort(arr, 0, arr.length-1);

    }

示例数组:{12,5,9,20,6,31,24} 结果:

the end

评论(0)